Nước thải công nghiệp vô cơ thường có nguồn gốc từ các ngành công nghiệp chính như khai thác than, sản xuất thép, khai thác khoáng sản phi kim loại, luyện sắt và mạ điện, cũng như gia công kim loại chứa axit hoặc dung dịch kiềm, crom, niken, kẽm, cadimi, chì, sắt và titan... Chất thải công nghiệp vô cơ thường chứa nhiều kim loại có giá trị kinh tế cao, có thể thu hồi và tái sử dụng trong quá trình tái chế. Việc này không chỉ giảm lượng chất thải đến môi trường, mà còn giúp tiết kiệm tài nguyên thiên nhiên và giảm áp lực lên việc khai thác tài nguyên mới.
Nước thải công nghiệp hữu cơ chủ yếu phát sinh từ các ngành công nghiệp và nhà máy sản xuất dược phẩm, thực phẩm, thuốc nhuộm hữu cơ, keo và chất kết dính, xà phòng, chất tẩy rửa tổng hợp, thuốc trừ sâu và thuốc diệt cỏ, sản xuất giấy và xenlulo, nhà máy bia và các nhà máy lên men... Chúng thường được ưu tiên loại bỏ thông qua xử lý sơ bộ, sau đó là xử lý sinh học.
Bảng 2. Tính chất nước thải của các lĩnh vực sản xuất điển hình
3. Công nghệ tiên tiến xử lý kết hợp tuần hoàn và tái sử dụng nước thải công nghiệp tại Việt Nam
Ngày nay, việc tuần hoàn và tái sử dụng nước thải công nghiệp ở Việt Nam đã trở thành một ưu tiên được quan tâm và triển khai rộng rãi. Điều này nhằm hướng đến mục tiêu vào năm 2035, ngành công nghiệp của Việt Nam sẽ phát triển theo hướng thân thiện với môi trường, hướng tới một ngành công nghiệp xanh và kết hợp với xu hướng kinh tế tuần hoàn. Đồng thời, việc này cũng sẽ góp phần quan trọng vào việc thực hiện cam kết của Chính phủ tại Hội nghị COP-26, với mục tiêu đưa phát thải ròng của Việt Nam về mức "0” vào năm 2050.
Đối với các doanh nghiệp, việc giải quyết vấn đề về tuần hoàn và tái sử dụng nước thải đang được coi là một ưu tiên quan trọng. Ví dụ, nhà máy Heineken Việt Nam đã đặt mục tiêu đến năm 2025 là 100% nước được tái sử dụng (nghĩa là trả lại tự nhiên lượng nước tiêu thụ cho sản phẩm và lượng nước bốc hơi trong quá trình sản xuất), 100% sử dụng năng lượng tái tạo và không còn chất thải chôn lấp [5].
Cũng như vậy, Khu liên hiệp sản xuất gang thép Formosa Hà Tĩnh và Hòa Phát Dung Quất đã đầu tư vào hệ thống công nghệ lò cao liên động khép kín 100%, cho phép xử lý toàn bộ chất thải rắn, khí thải, bụi và nước thải đạt các tiêu chuẩn kỹ thuật quốc gia về chất thải công nghiệp sản xuất thép, đồng thời tái sử dụng 100% nước thải [6].
Tại Công ty TNHH MTV Thiên Mã ở KCN dịch vụ thủy sản Thọ Quang (quận Sơn Trà, Đà Nẵng), việc áp dụng việc tái sử dụng và tuần hoàn nước thải công nghiệp đã mang lại hiệu quả kinh tế rõ rệt. Với công suất tái sử dụng nước thải sau xử lý 15 m3/ngày, Công ty đã giảm 130.000 đồng/ngày chi phí đấu nối và xử lý nước thải (8.600 đồng/m3), cũng như giảm chi phí tiền nước phải trả (15.000 đồng/m3), đồng thời có căn cứ để giảm thuế sử dụng tài nguyên [7].
Với những tiến bộ vượt bậc trong lĩnh vực công nghệ môi trường, hiện nay các giải pháp kỹ thuật đã sẵn sàng, có thể tích hợp để đưa ra những phương án kỹ thuật phù hợp trong từng công đoạn xử lý để đạt được mục tiêu nước thải sau khi qua các trạm xử lý tập trung không phải thải ra nguồn tiếp nhận mà được đưa qua quy trình xử lý nâng cao để tái sử dụng và tuần hoàn nước cho các quá trình sản xuất cần thiết. Các công nghệ điển hình được áp dụng để xử lý nâng cao cho mục đích tuần hoàn và tái sử dụng nước thải công nghiệp như:
Công nghệ màng lọc (MF, NF, UF và RO): Là một phương pháp xử lý nước được sử dụng rộng rãi trong việc loại bỏ các hạt bẩn, vi khuẩn, vi rút và các chất hóa học từ nước thải hoặc nước cần xử lý. Phương pháp này sử dụng màng lọc có kích thước chất lọc khác nhau để ngăn chặn các chất ô nhiễm, cho phép nước sạch thông qua màng và các chất ô nhiễm bị giữ lại hoặc loại bỏ [11]. Ưu điểm của công nghệ này là hiệu suất lọc cao, khả năng loại bỏ đa dạng các chất ô nhiễm, dễ quản lý và vận hành, thích hợp cho nhiều quy mô. Nhược điểm là chi phí đầu tư ban đầu cao, cần bảo trì, thay thế định kỳ để đảm bảo hiệu suất lọc và tránh tắc nghẽn. Màng lọc có thể bị hỏng hóc do các yếu tố như áp suất cao hoặc pH thay đổi, phát sinh các chất hóa học có hại. Một số hệ thống lọc màng yêu cầu năng lượng cao để tạo áp suất cần thiết cho quá trình lọc, điều này có thể làm tăng chi phí vận hành.
Công nghệ xử lý sinh học: Đây là phương pháp xử lý nước thải sử dụng các quá trình tự nhiên hoặc các vi sinh vật để loại bỏ các chất ô nhiễm từ nước thải [11]. Ưu điểm là thân thiện với môi trường, chi phí vận hành thấp, hiệu suất cao trong việc loại bỏ các chất hữu cơ, khả năng xử lý đa dạng các loại nước thải, thường có tính ổn định cao và có thể hoạt động trong thời gian dài mà không cần nhiều sự can thiệp hoặc bảo trì đặc biệt. Nhược điểm là thời gian xử lý dài, khả năng bị ảnh hưởng bởi điều kiện môi trường như thời tiết khắc nghiệt hoặc biến đổi môi trường, yêu cầu không gian lớn, tạo bùn hoặc khí thải thứ cấp, trong điều kiện môi trường cực đoan hoặc với các loại nước thải đặc biệt nặng, hiệu suất của hệ thống xử lý sinh học có thể giảm đi đáng kể.
Công nghệ ôxy hóa bậc cao: Là phương pháp xử lý nước thải sử dụng các chất ôxy hóa mạnh như clo, ôzôn, hay peroxit để tiêu diệt các chất hữu cơ, vi khuẩn, vi rút, và loại bỏ các chất ô nhiễm từ nước thải [11]. Ưu điểm: Loại bỏ hiệu quả các chất hữu cơ phức tạp, tiêu diệt vi khuẩn và vi rút, giảm thiểu thời gian xử lý so với một số phương pháp khác, đặc biệt là trong việc loại bỏ các chất ô nhiễm hữu cơ đặc biệt khó phân hủy. Phương pháp ôxy hóa bậc cao có thể áp dụng hiệu quả cho nước thải có độ ô nhiễm cao và đa dạng, bao gồm cả nước thải công nghiệp và nước thải sinh hoạt. Quá trình ôxy hóa bậc cao có thể dễ dàng được điều chỉnh và kiểm soát để đảm bảo hiệu suất xử lý tối ưu và giảm thiểu rủi ro về sự ô nhiễm môi trường. Nhược điểm: Phương pháp ôxy hóa bậc cao đòi hỏi một khoản đầu tư ban đầu lớn cho thiết bị và vận hành, đặc biệt là trong việc sử dụng các chất ôxy hóa như ôzôn hoặc clo, có chi phí cao. Quá trình ôxy hóa có thể tạo ra các chất phụ phẩm có hại như các chất hữu cơ halogen hoặc các chất độc hại khác, đòi hỏi việc xử lý phụ thuộc để đảm bảo an toàn cho môi trường, yêu cầu kỹ thuật cao, việc vận hành và bảo trì các hệ thống ôxy hóa bậc cao yêu cầu kiến thức kỹ thuật cao và quản lý chặt chẽ để đảm bảo hoạt động hiệu quả và an toàn.
Về mặt tổng quát, việc loại bỏ các hợp chất ô nhiễm hữu cơ, các kim loại nặng ra khỏi nước thải công nghiệp bằng các phương pháp xử lý trên vẫn chưa phải là giải pháp tối ưu. Nhược điểm của các giải pháp này là tạo ra chất thải thứ cấp như bùn hoặc khí thải, có thể gây ô nhiễm môi trường nếu không được kiểm soát và xử lý, cần trình độ kỹ thuật cao khi vận hành, chưa tuần hoàn nước hiệu quả, gây lãng phí tài nguyên nước và không đạt được mục tiêu thu hồi và tái sử dụng các nguồn tài nguyên có giá trị [8].
Công nghệ FBR-Fenton: Đây là công nghệ xử lý nước thải công nghiệp tiên tiến nhất hiện nay, đang nổi lên như một giải pháp tiềm năng đáng chú ý. Công nghệ này kết hợp sự linh hoạt của giường phản ứng phân tán và hiệu quả của quá trình Fenton, một phương pháp ôxy hóa tiên tiến.
Hình 2. Sơ đồ miêu tả phản ứng đồng thể và dị thể xử lý nước thải tại Nhà máy
Công nghệ FBR-Fenton dựa trên quá trình ôxy hóa tăng cường các chất hữu cơ khó phân hủy trong nước thải bằng chất xúc tác FeOOH + H2O2, quá trình này kết hợp đồng thời hai phản ứng quan trọng đó là phản ứng đồng thể và phản ứng dị thể được miêu tả như trong Hình 2. Ưu điểm của công nghệ FBR-Fenton so với công nghệ Fenton truyền thống là giảm đến 50% lượng Fe2+ và NaOH sử dụng, giảm hơn 60% lượng bùn thải phát sinh [9]. Ngoài ra, công nghệ FBR-Fenton không đòi hỏi các quá trình keo tụ, kết tủa và lắng nên giảm diện tích xây dựng các công trình xử lý nước thải kèm theo, trong quá trình phản ứng dị thể tạo ra hạt FeOOH, là một trong những vật liệu gốc sắt phổ biến rộng rãi và có nhiều trên trái đất, nổi lên như một chất xúc tác không đồng nhất đầy hứa hẹn trong quá trình oxy hóa bậc cao nhờ chi phí thấp, không độc hại, sẵn có, thân thiện với môi trường và độ ổn định tương đối. Trong khi đó, Fe(III) của FeOOH có thể được thay thế bằng các loại kim loại hóa trị hai và hóa trị ba, do đó tạo điều kiện thuận lợi cho việc cố định và phân tán đồng đều các kim loại pha tạp. Ngoài ra, vùng điện hóa hẹp (1,9-2,2 eV, pH=7) của FeOOH khiến nó trở thành chất bán dẫn phù hợp cho các ứng dụng xúc tác quang không đồng nhất để loại bỏ các chất ô nhiễm hữu cơ khỏi nước thải [10]. Do đó, chất lượng nước sau quá trình FBR-Fenton đạt quy chuẩn xả thải cột A, QCVN 40:2011/BTNMT, tỷ lệ tái sử dụng trên 90% lượng nước thải từ nhà máy sản xuất sau khi xử lý, trở thành một mục tiêu khả thi, mang lại lợi ích về mặt tài chính thông qua giảm thiểu nhu cầu sử dụng nước sản xuất và giảm lượng nước thải xả ra môi trường.
Hình 3. Các dự án ứng dụng công nghệ FBR-Fenton xử lý nước thải công nghiệp tại Việt Nam
Như vậy, tiềm năng áp dụng công nghệ tiên tiến FBR-Fenton trong xử lý kết hợp tuần hoàn và tái sử dụng nước thải công nghiệp là rất lớn, đảm bảo việc thu gom, xử lý và tái sử dụng nguồn nước thải, đồng thời góp phần BVMT, thúc đẩy mô hình kinh tế tuần hoàn.
4. Kết luận
Ngành công nghiệp ở Việt Nam đang phát triển nhanh chóng và đa dạng hóa của các lĩnh vực sản xuất, từ chế biến thực phẩm, dệt may, điện tử đến công nghiệp hóa chất và công nghiệp chế biến. Tuy nhiên, điều này cũng đi kèm với một thực trạng gây ô nhiễm môi trường nghiêm trọng. Việc xả thải từ các nhà máy và cơ sở sản xuất gây ra nhiều vấn đề đối với môi trường, như ô nhiễm nước, đất và không khí.
Để giải quyết thực trạng ô nhiễm này, việc cấp thiết là cần áp dụng các công nghệ xử lý nước thải tiên tiến kết hợp tuần hoàn và tái sử dụng nước thải công nghiệp đang trở thành một bài toán khó tại Việt Nam. Thông qua việc áp dụng các công nghệ mới và sáng tạo, chúng ta có thể xử lý nước thải từ các nhà máy và cơ sở sản xuất một cách hiệu quả, đồng thời tái sử dụng nước đã qua xử lý để giảm thiểu tác động lên tài nguyên nước và môi trường. Điều này không chỉ giúp giảm bớt ô nhiễm mà còn tạo ra một chuỗi giá trị bền vững và có ích cho cộng đồng và xã hội.
Trong bối cảnh ngày càng tăng cường ý thức về BVMT và sử dụng tài nguyên hiệu quả, việc áp dụng công nghệ FBR-Fenton trong xử lý nước thải công nghiệp tại Việt Nam đang nổi lên như một giải pháp tiềm năng đáng chú ý. Ứng dụng công nghệ FBR-Fenton trong xử lý nước thải công nghiệp ở Việt Nam không chỉ mang lại lợi ích kinh tế mà còn góp phần tích cực vào BVMT và tài nguyên nước của đất nước. Điều này là một bước tiến quan trọng trong hành trình của Việt Nam hướng tới phát triển bền vững và BVMT.
Tuy nhiên, để triển khai, áp dụng công nghệ này một cách hiệu quả, việc đầu tư vào cơ sở hạ tầng và công nghệ là điều không thể thiếu. Cùng với đó, việc chuyển giao công nghệ và đào tạo nhân lực chuyên môn cũng đóng vai trò quan trọng. Chính sách và quy định pháp luật cũng cần được cập nhật và thúc đẩy để tạo điều kiện thuận lợi cho việc áp dụng công nghệ này trên diện rộng tại các nhà máy và KCN tại Việt Nam. Chính phủ và các tổ chức liên quan cần hợp tác chặt chẽ để đẩy mạnh việc áp dụng công nghệ này, đồng thời tạo ra các cơ chế khuyến khích, hỗ trợ phù hợp để đạt được mục tiêu BVMT và phát triển kinh tế - xã hội của đất nước.
Hoàng Thị Kim Yến, Lê Văn Giang
Viện Tài nguyên và Môi trường, Đại học Quốc gia Hà Nội
Tài liệu tham khảo
1. HA.NV, GDP năm 2023 của Việt Nam tăng 5,05%. Báo điện tử Đảng Cộng sản Việt Nam, ngày 29/12/2023.
2. V.T, Đến cuối tháng 2/2021, cả nước có 370 KCN, Báo đầu tư, ngày 1/3/2021.
3. N.K. Hai. Ô nhiễm môi trường công nghiệp và sức khỏe cộng đồng, Cổng thông tin điện tử Bộ xây dựng, ngày 12/12/2006.
4. N. Tuyen. Những vụ xả thải tai tiếng của doanh nghiệp, Báo VnExpress, ngày 11/5/2016.
5. Thông cáo báo chí. HEINEKEN Việt Nam đầu tư 30 tỷ đồng góp phần bảo tồn tài nguyên nước tại các lưu vực sông Hồng, sông Đồng Nai và sông Tiền cùng WWF-Việt Nam và các đối tác, HEINEKEN Việt Nam, ngày 19/8/2022.
6. H.T.T. Huong. Tuần hoàn tái sử dụng nước thải sau xử lý trong công nghiệp - tiềm năng và thách thức, Tạp chí Môi trường, số 3/2023.
7. L.T. Anh. Tính khả thi về khoa học và thực tiễn tuần hoàn, tái sử dụng nước thải của nhà máy thép: Kinh nghiệm từ Nhà máy thép Hòa Phát và Công ty gang thép Hưng Nghiệp FORMOSA, Tạp chí Môi trường, ngày 7/7/2023.
8. J.R. Rustad, J.-F. Boily. Density functional calculation of the infrared spectrum of surface hydroxyl groups on goethite (α-FeOOH), Am. Mineral., 95 (2010), pp. 414-417.
9. O. Oputu, M. Chowdhury, K. Nyamayaro, F. Cummings, V. Fester, O. Fatoki. A novel β-FeOOH/NiO composite material as a potential catalyst for catalytic ozonation degradation of 4-chlorophenol, RSC Adv., 5 (2015), pp. 59513-59521.
10. H. Liu, T. Chen, R.L. Frost. An overview of the role of goethite surfaces in the environment, Chemosphere, 103 (2014), pp. 1-11.
11. P.V. Nidheesh, V. Ravindran, A. Gopinath, M.S. Kumar, Emerging technologies for mixed industrial wastewater treatment in developing countries: An overview, Environmental Quality Management, 31 (2022) 121-141.